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INTRODUCTION

Let f be a real-valued continuous function with 0 < f(x) <1 for all x in
[0, 17]. We show that, for each positive integer n, there is a polynomial p
of degree < n that interpolates f at n+ 1 distinct points in [0, 1], and such
that 0 < p(x)< 1 for all x in [0, 1]. (For certain f there is a restriction on
the parity of n.) In other words, for some choice of 1+ 1 distinct points in
[0, 1], the unique Lagrange intcrpolant to f at those points is bounded
between 0 and 1. A similar result was proven by Briggs and Rubel [BR]
for interpolation by non-negative polynomials, though our approach is
different from their’s. We use a perturbation of p*, the best restricted range
approximation (brra) to / in the uniform norm on [0, 1 ]. combined with
the alternation theorem below. In fact it follows easily that if / is differen-
tiable on (0, 1), then p* is a Hermite interpolant to /- Compare this to the
unrestricted best approximation, which, by the Chebyshev Alternation
Theorem, is a Lagrange interpolant to f.

In Section 2 we discuss restricted range interpolation where all the nodes
are allowed to coalesce to form the nth partial sum of the Taylor series for
/. We end the paper with some open questions.

1. MAIN RESULT

Let H,= {polynomials of degrce <n with 0< p(x)< ! for all x in
[0, 17} and | /] =sup, o7 [/ (x)] for fin C[O, 1]. It is well-known that
there 1s a unique polynomial p* in H,, called the brra to f, such that
I f=p*I=inf,_, | f—pl. For fixed n and f¢ H, we define the following
sets:
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and A=F, UE o, uC . Define the following function on 4:
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Important for our purposes are the following sets:

(" =set of points in 4 where p* =/ (Note that C< C . v if [ # p*)
(1.1
E=set of points in 4 where p*+#f. e, E=A4 - (. (1.2)

The key to our approach is the following theorem from approximation
theory [T]. Here /{x)=0, w(x}=1, and our Chebyshev system is the
algebraic polynomials.

ALTERNATION THEOREM (G.D. Taylor). If feC[0, 1] with 0< f <1,
then there exist n+2 points x < - <x,, . of A such that o(x; )=
—a(x,), i=1 on+ L We call 1x;}7" 7 an alternant for f— p*.

DEerINITION.  Given a continuous function f on an interval /, if another
continuous function g satisfies f(¢)= ¢(s) for some ¢ in /, we say that g
interpolates f at 1. If f— g also changes sign as x passes through ¢, we say
that 7 is a crossover value for (/. g).

Our main result is
THEOREM 1. Suppose fe CLO, 1] with O< f(x)<1 for all x in [0, 1].
Let n be a positive integer, where we assumnte
(1) miscvendif f(Oy=f{1}y=0o0r 1
(1) mis odd if 1(0)=0and f(1y=1.0r f(0)=1 and f(1)=0.
Then there exists a polvaomial p in H, which interpolates f at n+ 1 distinct
points in [0, 17.

Remarks. (1Y If O< fixy<1 for all x in (0, 1), then it follows casily
from the Alternation Theorem that the brra to / alrcady mnterpolates f at
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n+1 points in [0, 1]. ie., no perturbation is necessary in this case.
Theorem 1 is non-trivial when f takes on the values 0 and/or 1 in (0, 1).

(2) I »nis odd and f satisfies (i), or if # 1s even and f satisfies (i),
then we do not know if Theorem 1 still holds, except for n<3 (see the
remarks following the proof of Theorem 1},

(3) It is not hard to show that assumptions (i) and (ii) guarantee
that 0 and 1 cannot both be in C if f# p* For example. suppose
f0y=/(1)=0o0r 1. Nowif x,=0and x,, =1 are both in C, then by the
definition of " we must have p*(0)= p*(1)=0 or 1, so that 0 and 1 are
either both in C, or both in C . This implies that ¢{0)=a(1). But since
n must be cven by (i), by the Alternation Theorem o(1)= —-a(0), a
contradiction. A4 similar argument shows that 0 and | cannot both be in C
if f(0)=0 and f(1)=1, or f(0)=1 and f(1)=0. Finally, if either
0< f(0y<1lor0<f(1)<1. then it follows easily that O or 1 must be in E.

Before proving Theorem | we need the following lemmas. For Lemmas |
and 2, assume that [ and g are continuous functions in some
neighborhood N of x =¢, and that f and g are never equal to d in N — {¢].

Lemma 1. Suppose flc)= g(¢)=d and that (¢, d) is either a local maxi-
mum or minimum point for both  and g. Then for v sufficiently close to 1,
there is a crossover value t in (¢, ¢/r) for (f. g,), where g,(x)= g(rx).

Proof.  Suppose that (¢, d) is a local maximum point for both f and g.
Since g,(¢/r)= gl(¢)=d, then for r close to 1, g (¢/r)> f(¢/r) and g, (¢)=
glre)<d=f{c¢). The lemma then follows from the intermediate value
theorem. The case when (¢, d) is a local minimum point follows in the
same way.

The argument we use to prove the following lemma is similar to the
proof of case A of the theorem in [BR].

LEMMA 2. Suppose that (¢, d) is a local maximum (minimumt) point for
hoth [ and g, and that | — g is non-negative (non-positive) in N. Let t' and
1" be any two numbers in N with ' <c<t", f(1'Y#£ g(t'), and f(t") £ g(t").
Then for v sufficiently close to 1, there are crossover values for (f. g,} in
(t'.ciryand (¢/r. t7).

Proof.  Without loss of generality. consider the case when (¢, d) is a
local maximum point for both f and g, and f'— ¢>0 in N. Choose ¢>0
so that g(#)+e<f(t') and g(t")+e<f(+")., and choose r close to 1 so
that |g(x)— g (x) <& for x=1.¢", [(¢/ri<d. and ¢ <c¢/r<t”. Then
g (V< ), g,.("Y<f(1"), and g (c/ry=g(c)=d> f(¢/r). The lemma
now follows again by the intermediate value theorem.
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LemMa 3. Ler feCLO U] 0 < 1L and ler p* be the best approximua-
tion to | from H,. n a given positive integer. Assume that | takes on the
values O and 1 only finitely often in [0. 1], and that [ % p*. Let {x,|" [ he
an alternant for [ — p*. and suppose there are nvwo alternation points ¥, < x,
in E. with all of the alternation points berween x; and x, in C. Then for r
sufficiently close to 1, there are at least k -1 crossover values for (f. p*(rx))
in (X, x5

Proof- The lemma follows immediately if k=741, so we can assume
k =i+ 2. Also assume. without loss of generality, that p*(xv,) < f(v,). Let
S=1(x,,,.-x\  and note that

PECG =00 s pRYy =Ly ) (1.3)

Every point of S is cither a local strict maximum or mini-
mum for both f and p* (1.4)

Statement (1.4) follows for f since / cannot equal O to 1 infinitely often.
Statement (1.4) follows for p* since p* cannot be a constant if S# & (if
p* is a constant, then it follows casily that it must be 0. But then f =0 by
the Alternation Theorem).

By (1.4) there are deleted neighborhoods of each of the points in § in
which f and p* cannot equal 0 or {. We can then apply Lemmas [ and 2
when needed.

Now by Lemma | (with g= p*). for cach pont v, of §. there is a cross-
over value for (/. p*(rx)) in (x,, x,/r) for r sufficiently close to 1. But this
gives only A —7— 1 crossover values, which is not enough for the lemma.
To get the extra crossover value, we arguc as follows.

We consider two cases.

Case 1. All of the points of .S are crossover values for (f. p*).

Suppose p*(x, 1< f(x,). Then A— 7 must be even by the Alternation
Theorem since x, and x, are both in E, v . Since all of the points of
S are crossover values, /' — p* must have at least k — /-1 sign changes in
(x,,x,). But since f— p* is positive at both x, and v,. there must be
precisely an cven number of sign changes, and hence /' — p* has at least
k — i sign changes in (x,, x;). This yields the extra crossover value, and the
lemma now follows since crossover values are preserved under small pertur-
bations. The case when p*(x,;)> f(x,) follows in a similar fashion. This
completes the proof of Lemma 3 when ali the points of S are crossover values.

Case 2. Assume that at least one of the points of .S i1s not a crossover
value for (/. p*).

Let m be the smallest positive integer. n1 >/, such that x, €S and x,, is
not a crossover value. Assume that m—7i is even, and thus p*(x, )=
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f(x,,)=0, the case m — i odd following in a similar fashion. We¢ now have
two possibilities.

(i) p*x)<fix)yon (x,—0d, x,,+86)— {x, | for some d>0.

Since x,.,....X,, . are all crossover values for (f, p*), f— p* has at
least m —i—1 sign changes in (x,.x, —4/2). But since p*(x)<f(x) on
(x,,—0.x,) and p*(x;,)< f(x,), the precise number of sign changes of
_/'fp* in (x;, x,,—d/2) must be even, and hence must be at least nr— i,
Thus for » close to 1, (f, p*(rx)) will have at least m —i crossover values
in (x,, x, —0/2). As noted above we get crossover values to the right of x,,

through X, by Lemma 1. This gives a total of k ~ i crossover values.
(i) p*x)>f(x)on (x,, —o.x,,+0)— |x,, | for some >0

Then we  just apply Lemma2 with g=p* and ~,—-0<i'<

X, <1"<x,+9d, to get that (/. p*¥(rx)) has crossover values in (¢, x,/r)
and (x,/r,1") for r close to 1. Again by Lemma | we obtain crossover
values to the right of x, for j=i+1...m— 1. m+ 1. k— 1 Since we just
obtained two crossover values near .,,. this gives a total of (m~i—1)+
(k—m—1+2=k—1

Note that since (x,,, 0) is a local minimum point for both f and p*, we
can only use Lemma 2 for case (it). Note also that we can always choose
r. t', 1" appropriately so as not to count the same crossover value twice.
This proves Lemma 3.

n

Proof of Theorem 1. Assume that f'— p* has only finitely many zeros in
[0, 1] and that f takes on the values 0 and 1 at most a finite number of
times (otherwise Theorem | follows immediately by taking p= p* or p=0
or 1. respectively). Let {x,}” "7 be an alternant for f — p* such that 0 and
1 are not both in C {(such an dlternant exists by the Alternation Theorem
and Remark 3 following the statement of Theorem 1). Of course, the
alternant may not contain 0 and/or | at all. Also. if all, or all but one, of
the alternation points is in C, then we have at least #+ | interpolation
points and the theorem is proved by taking p= p*. So assume that there
are at least two points in E, and let x, x be the first point in £ and x, |,
the last such point. Let B={x,....x,| and D= {x,. ...x,, ,} (it could
happen that B and/or D are empty). Therc are three cases to consider for
the last alternation point.

Case 1: x,,.<1l

Then by Lemma 1 we get a crossover value for (/. p*(rx)) just to the
right of each point in Bu D (if x, =0 then x, is an interpolation point for
all r <1). We also apply Lemma 3 to intervals of the form (.x,, x,) where
x,and x, are in £ and any alternation points in between are in C. The total
count of interpolation points must then be at iecast # + 1 and Theorem 1 is
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proven in this case by taking p(v)= p*(rv), r close to 1. Note that the
crossover value to the right of x,,,. when x, . 1s in (', makes up for the
possibly missing crossover value between v, | and x,.

Case2: x,,,=1and leFE.

Then we argue as in Casc I, except that here the set D is empty and we
do not need a crossover value to the right of x,,, ».

Case 3. x,,.=1and le(.

o

First, if «, >0, then just consider g(x)= f(1 — x}), use Case | for g, and
map back. Second, if x;,=0 and Oe £, then just apply Case 2 to g. This
exhausts all possibilities by assumptions (1) and (i) in Theorem 1, which
guarantee that 0 and | cannot both be in C.

Remarks. (1) It is easily seen from the proof of Theorem 1 that
assumptions (i) and (i) can be replaced by the weaker assumption that 0
and 1 are not both in the set C. We preferred, however, to state Theorem |
without any reference to the Alternation Theorem.

(2) For n<3 Theorem 1 holds without assumptions (1) and (i1).
For #=1 this is trivial. Now suppose n=2 and p*(0)=f(0)=0,
p¥(1)=f(1)=1, so that 0 and | arc both in C. Then p* is increasing on
[0, 17, and the two points in 4 n (0, ) must be in E (in fact, in £, UE ).
This implies that p* itself interpolates / at three points in [0, 1], and
Theorem 1 1s proved. If n=3 and if p*(0)=p*(1)=f(0)=/(1)=0 (
again 0 and 1 are both in ), then it is casy to show that there cannot be
an aiternation point in C between two points in E. But then p* interpolates
f at at least two points in (0, 1). and Theorem ! follows. This line of
reasoning breaks down for n>4.

2. TAYLOR SERIES

In this section we discuss restricted range interpolation when the # + |
interpolation nodes coalesce into one point ¢, and we then have the Taylor
polynomial s, (.x; ¢) of order 7 at ¢. In [ BR] it is noted thatif e C" [0, 1]
1s non-negative on [0, 1], and if »n is even, then it is possible to choose
c¢€e [0, 1] such that s, (x;¢) is also non-negative on [0, | ]. We now show
that this fails in the restricted range case for any # > 2. In fact we construct
one / that works for all = 3. So suppose [ satisfies, for each 1= 3.

Futiog on [0, 1] (2.1)
0< /<1 on [0, 1] (2.2)
Ff10)=0, f(ty=1, and Flxy) = for some x,mn (0, ). (2.3)
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It is not hard to construct such an f. For example. one can choose
fix)= p{x)—ke™ where p is a cubic polynomial and &k and r arc positive
constants. Then / will automatically satisfy (2.1). We must choose p, k. and
r to force f to satisfy (2.2) and (2.3). First let g(x)=¢(x)—e¢", ¢ a cubic,
so that g has two local maximums and a local minimum in between. This
can be done so that f{x)= g(L(x))+ ¢ satisfies (2.2) and (2.3), for some
linear function L and some constant c.

Now let p(x}=ys,(x:¢) for fixed #=3 and ¢ in [0, 1], and let E(x)=
S = px)=["" O+ D! x—c)"' ' between x and ¢ Since
E(1) <0 unless ¢ =1, we must choose ¢ = 1-—for otherwise p(1)> 1. But if
n is even, then E(0) > 0, which implies p(0)<0. If 2 is odd, then E(x,) <0,
which implies that p(x,)> 1. Thus 0 < f <1 on [0, 17, but no Taylor poly-
nomial to / of degree at least three, expanded about ¢ in [0, 1], has the
same property. For n =2 we can choose f to satisfy (2.1)}-(2.3), cxcept we
do not assume f(x,)=1 for some v, in (0, 1), which is really only used
when # is odd.

It is natural to ask what happens when » = 1, i.e., must some tangent linc
to / be bounded between 0 and 1 on [0, 1], where we assume f 1s differen-
tiable on [0, 1] with 0< /< 1? We can prove the following partial result.

THEOREM 2. Suppose 0< f(X)< 1. f(0)y=0. f(1)=1, and ["(x)#£0 for
all x in [0, 1]. Then for some ¢ in [0, 1 ], the tangent line at (¢, f(¢ )), T (x),
satisfies 0 T A(x)< 1V for all x in [0, 1].

Proof-  We can assume [~ 1s never 0, for otherwise there is a horizontal
tangent line which does the job. Since f(0)< (1), we then have /" >0 on
[0. []. Now if /" is never 0 in (0, 1 ). then we can choose the tangent line
at (0,0) if / 1s convex, and the tangent linc at (1, 1) if / is concave. So
suppose (xq. f(xy)) 1s an inflection point, where 0 < x,<1 (Since f” is
monotone there is precisely one inflection point if f” vanishes somewhere
n (0, 1))

Case . f"(x)<0for x<x,.

Then we can choose ¢=x, for the following reason. Let E(x)=
S(x) =T (x)=(f"({)/2)(x —x4)%, ¢ between x and x,. Then it follows
immediately that E(0)<0 and E(1)>0. and since T, is increasing.
Theorem 2 is proven in this case.

Case 2. f7(x)>0 for y<x,.

Note that we cannot have both f’(0)>1 and f"(1)>1, since then
J(x)>1 for all x in [0, 1], which contradicts, by the Mean Value
Theorem, the fact that (f(1)— f(0O)/1—0)<1. Now T,(x)=7"(0)x,
which impiies that To(1)=/"(0), and T,(x)=1+ f'(1)x— 1), which



46 ALAN HORWITZ

implies that T (0)=1—f"(1). Thus T, and/or T, must satisfy the conclu-
sion of Theorem 2.

3. OPEN QUESTIONS

It is natural to ask how many of the interpolation points in Theorem |
can be specified in advance. For non-negative interpolation this question
was discussed in [H], where it was shown that roughly half the points can
be fixed in advance if f is positive at those points. If f(¢)=0, ¢ [0, 1].
then it i1s possible that there is no non-negative Lagrange interpolant to f
when one of the interpolating points includes ¢. A similar negative result
follows immediately for restricted range interpolation. For example, there
is no non-negative quadratic (and hence no quadratic bounded between 0
and 1) that interpolates x* at three distinct points in [0, 1], 0 included.

QUESTION L. How many interpolation points, (¢, f(¢)). in Theorem 1 can
be specified in advance if 0 < fley<1?

QUESTION 2. Can assumptions (1) and (i) be removed in Theorem 17

QUESTION 3. Does Theorem 1 hold when the upper and lower functions
are not necessarily constant? What about for Chebysher svstems other than
the polvnomials? (The techniques in this paper do not seem to work in those
cases.)
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