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I"TRODlJCTIO~

Let / be a real-valued continuous function wi,th 0 ~ /(x) ~ 1 for all x in
[0, 1]. We show that, for each positive integer 11, there is a polynomial p

of degree ~ 11 that interpolates / at 11 + 1 distinct points in [0, 1J, and such
that 0 ~ p(x) ~ I for all x in [0, 1]. (For certain / there is a restriction on
the parity of 11.) In other words, for some choice of J1 + 1 distinct points in
[0, 1], the unique Lagrange interpolant to / at those points is bounded
between 0 and 1. A similar result was proven by Briggs and Rubel [BRJ
for interpolation by non-negative polynomials, though our approach is
different from their's. We use a perturbation of p*, the best restricted range
approximation (brra) to / in the uniform norm on [0. 1], combined with
the alternation theorem below. In fact it follows easily that if / is differen­
tiable on (0, 1), then p* is a Hermite interpolant to f Compare this to the
unrestricted best approximation, which, by the Chebyshev Alternation
Theorem, is a Lagrange interpolant to f

In Section 2 we discuss restricted range interpolation where all the nodes
are allowed to coalesce to form the 11th partial sum of the Taylor series for
f We end the paper with some open questions.

1. MAIN RESULT

Let H
II

= {polynomials of degree ~II with O~p(x)~ I for all x in
[0, 1J) and II/II =suP,Ero.lll/(x)1 for/in C[O, 1]. It is well-known that
there is a unique polynomial p* in H II , called the brra to f; such that
11/~p*11 =infI'EII. II/-pll· For fixed 11 and /riHII we define the following
sets:
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E, = (xc[O, 1]:/(Y) p*(y)=il/ p*i:

E ={xE[O,I]:/(Y) p*(Y)= -U-p*! I

C, =:XE[O, I]:/)*(X)=O:

C =:xE[O,I]:p*(x)=I:

and A = E! U E u C 1 U C . Define the following function on A:

\ +1
O"(Y) = ')

( - 1

if XE E. u C I

if \ E E u C

Important for our purposes are the following sets:

C=set of points in A where p* =f (Note that C~ C. u C if t"$ p*)

( I. 1)

E = set of points in A where p* *I, i.e., E = A C. ( 1.2)

The key to our approach is the following theorem from approximation
theory [T]. Here I( x) == 0, u(\) == I, and our Chebyshev system is the
algebraic polynomials.

ALTERNATION THEOREM (G.D. Taylor). Ij /E C[O, I J
then there exiSI n + 2 points x, < ... < x" I c oj A such
- O"(xd, i = I, .... n + I. We ('(ill: X j :;' I,] an altel"!wt1Ililr /

\j'ith 0 ~/ ~ I,

Ihat O"(x,t I) =

1)*·

DEFINITIO:". Given a continuous function / on an interval I, if another
continuous function g satisfies /( t) = g( t) for some t in I, we say that g

interpolates / at t. If / - g also changes sign as .\ passes through t. we say
that t is a crossover value for (j, g).

Our main result is

THEORE'vi 1. S'uppose /cC[O, I] I\'irh O~/(x)~ 1 fiil' all x ill [0,1].
Let n he a positive integer, \j'here \j'e aSSllme

(i) n is el'Cll if /(O) = /( I ) = 0 or I

(ii) n is odd if/(O) = 0 and I( I) = I, or /(0) = 1 lIlId /( I) = O.

Then there exists a pol\'noll1ial p ill H" which illlerpol(l[es / ar II + 1 distinct
poillts ill [0, 1].

Remarks. (I) If 0 < fix) < 1 for all x in (0, I), then it follows easily
from the Alternation Theorem that the brra to / already interpolates / at
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II + 1 points In [0, I], i.e., no perturbation is necessary In this case.
Theorem I is non-trivial when / takes on the values °and/or 1 in (0, I).

(2) If 11 is odd and / satisfies (i), or if 11 is even and / satisfies (ii),
then we do not know if Theorem 1 still holds, except for n ~ 3 (see the
remarks following the proof of Theorem 1 ).

(3) It is not hard to show that assumptions (i) and (ii) guarantee
that 0 and I cannot both be in C if / l' p* For example, suppose
((0) = (( 1) = 0 or 1. Now if x J = 0 and Xl/ f 2 = I are both in C then by the
definition of C we must have p*(O) = p*( I) = 0 or I, so that °and I are
either both in C f or both in C . This implies that 0-(0) = a( I). But since
11 must be even by (i), by the Alternation Theorem 0-( I) = -- a(O), a
contradiction. A similar argument shows that 0 and I cannot both he in C
if /(0)=0 and /(1)=1, or /(0)=1 and /(11=0. Finally, if either
0</(0) < I or 0 <f( II < L then it follows easily that 0 or 1 must he in E.

Before proving Theorem 1 we need the following lemmas. For Lemmas I
and 2, assume that / and g are continuous functions in some
neighhorhood N of x = c, and that / and g are never equal to din N --I c l.

LE~IMA I. Suppose /( c) = g( c) = d and that (c, d) is either a loul! maxi­
mum or minimum point feJr horh / and g. Then fe)r r sufficiently close to L
there is a crossover mlue t in (e, clr) fe)r U: gr)' )rhere g,(x) = g(rxl.

Proal Suppose that (c, d) is a local maximum point for both I and g.
Since g,(c/r) = g(e) = d, then for r close to L gr(e/r) >/(c;r) and g,(e) =
g( rc) < d = I( c). The lemma thcn follows from the intermediatc value
thcofem. The case whcn (c, d) is a local minimum point follows in the
same way.

The argument we use to prove the following lemma IS similar to the
proof of case A of the theorem in [BR],

LEMMA 2. Suppose that (c, d) is a local maximum (minimum) point F)r
hoth I alld g, and that I - g is non-negati1'e (lloll-positi1'c) in N. Let r' and
t" he any flro numhers ill N \rith r' < c < tH, I( t') "'" g(t'), and/(tH) "'" g(tH).
Then fe)r r sufficiently close to 1, there are crOSS01'er values F)r U: g,) in
(t', elr) and !c..!I'. tH).

Proo(: Without loss of generality, consider the case when (e, d) is a
local maximum point for both / and g, and I - g): 0 in N. Choose I: > 0
so that g(t') + I: </(t') and g( tH)+ I: </(tH), and choose r close to I so
that Ig(x)-g,(x)I<I: fOf x=r',t",/(c!rl<d. and r'<c/r<t H. Then
g,(t') <f(t'), g,(tH)<f(t H), and g,(e/r) = g(c)=d>f(e/r). The lemma
now follows again by the intermediate valuc theorem.



42 ALA!\ HOR Will

LEMMA J Let f E C[O. IJ O:s; I ~ I. i1l1d let p* he the hest i1pprOXilllll­
tioll to I frOIll H

II
• II iI gil'('/1 positil'e illteger. AssulIle thilt f rakes Oil Ihe

mlues 0 alld I 01111' jill itch o!tell ill [0. I]. i1l1d thilt f '/= p*' Let: X, : ;' . [2 he
all aitallalll/iil' f- p*. alld suppose there i1rc 11m alternatioll poillts X, < X,
ill E. lrith all 0/ the altematioll poillts het1l'eell X, alld x, ill C. Theil jiir I'

su!fleientll' close to I, there arc at least k i erOSSOl'er mlucs!iir U: p*(rx))

in (Xi' x,).

Proof The lemma follows immediately if k = i + I. so we ean assume
k? i + 2. Also assume. without loss of generality. that P*(\,) </(\,), Let

S = (x; , [ •...• \1- [: and note that

p*(X , + I) = f(,\, . I)' .... p*l\j, [) = f(x j. I)' IIJ)

Every point of S is either a local strict maximum or minI-
mum for both I and p*' (14)

Statement (1.4) follows for f since f cannot equal 0 to 1 infinitely often.
Statement (14) follows for p* since p * cannot be a constant if S *0 (if
p* is a constant. then it follows easily that it must be O. But then f == 0 by
the Alternation Theorem).

By (1.4) there are deleted neighborhoods of each of the points in S In
which f and p* cannot equal 0 or I. We can then apply Lemmas I and 2
when needed.

Now by Lemma 1 (with g = p*). for each point\j of S. there is a cross­
over value for U. p*(rx)) in (x/. X ) for I' sufficiently close to I. But this
gives only k - i-I crossover values. which is not enough for the lemma.
To get the extra crossover value. we argue as follows.

We consider two cases.

Casc 1. All of the points of S are crossover values for (f. p*).

Suppose p*(X,1 <f(x,). Then k - i must be even by the Alternation
Theorem since ,\, and x, are both in E, U C, . Since all of the points of
5 are crossover values. f~' p* must have at least k - i .- 1 sign changes in
(x,.x,). But since f-p* is positive at both Xi and X,. there must be
precisely an even number of sign changes. and hence f - p* has at least
k - i sign changes in (Xi' xd. This yields the extra crossover value. and the
lemma now follows since crossover values are preserved under small pertur­
bations. The case when p*(x k ) >/(\,) follows in a similar fashion. This
completes the proof of Lemma 3 when all the points of 5 are crossover values.

Case 2. Assume that at least one of the points of S' is not a crossover
value for u: p*).

Let m be the smallest positive integer. Ill> i. such that Xm E Sand Xm is
not a crossover value. Assume that 111- i is even. and thus p*(xm ) =
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I(x/ll) = 0, the case III - i odd following in a similar fashion. We now have
two possibilities.

(i) p*(x)<f(x) on (x",-(), x,,,+())-:x/II: for some (»O.

Since x, ~ I' ... , X/II I are all crossover values for U, p*), 1-[1* has at
least 111- i-I sign changes in (x" x"' - ()/2). But since p*(x) < I(x) on
(x '" - (). x"') and p *(x,) </( x,), the precise num ber of sign changes of
1- p* in (x" X/II - c5!2) must be even, and hence must be at least III .~ i.
Thus for r close to L (f p*(rx)) will have at least 111- i crossover values
in (x" 'V/II - ()/2). As noted above we get crossover values to the right of x"'
through Xk I by Lemma 1. This gives a total of k ... i crossover values.

(ii) p*(xl>/(x) on (x",-(),XI/I+())- :V/II] for some (»O.

Then we just apply Lemma 2 with g = p* and X/II - () < r' <
x,,, < 1" < X/II + (), to get that U: p*( rx)) has crossover values in (r', x",/r)

and (x/II;(' (") for r close to I. Again by Lemma I we obtain crossover
values to the right of x/ for j = i + 1, ... , III - 1. III + I, ... , k - I. Since we just
obtained two crossover values near x",. this gives a total of (Ill - i-I) +
(k - III - I )+ 2 = k - i.

Note that since (X/II' 0) is a local minimum point for both I and [1*. we
can only usc Lemma 2 for case (ii). Note also that we can always choose
r. 1', (" appropriately so as not to count the same crossover value twice.
This proves Lemma 3.

Proo/o( Theorelll I. Assume that 1- p* has only finitely many zeros in
[0, I] and' that I takes on the values 0 and I at most a finite number of
times (otherwise Theorem I follows immediately by taking [I = p*, or p = 0

or l. respectively). Let:x/:;'\~ be an alternant for 1- p* such that 0 and
I arc not both in C (such an alternant exists by the Alternation Theorem
and Remark 3 following the statement of Theorem I). Of course, the
alternant may not contain 0 and/or I at all. Also. if all, or all but one. of
the alternation points is in C, then we have at least If + I interpolation
points and the theorem is proved by taking p = p*. So assume that there
are at least two points in E, and let x" + I be the first point in E and x,/ !

the last such point. Let B =:x I .... , x,,) and D =: x,! . .... V" + 2: (it could
happen that Band/or D are empty). There are three cases to consider for
the last alternation point.

Case 1: x 1/ + 2 < 1.

Then by Lemma 1 we get a crossover value for U p* (rx)) just to the
right of each point in BuD (if x I = 0 then x I is an interpolation point for
all r < 1). We also apply Lemma 3 to intervals of the form (x/,Y k ) where
x, and Xk are in E and any alternation points in between arc in C. The total
count of interpolation points must then be at least If + 1 and Theorem I is
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proven in this case by taking p(.\') = p*(rx), r close to 1. Note that the
crossover value to the right of x" + 2- when x" 2 is in C, makes up for the
possibly missing crossover value between x,/ I and x,/.

Case 2: .y" t 2 = I and I EO E.

Then we argue as in Case I. except that here the set D is empty and we
do not need a crossover value to the right ofy" + ."

Case .3 :\'" t 2 = 1 and I EO C.

First if x I> 0, then just consider g(x) = f( I - x), use Case 1 for g, and
map back. Second, if x I = 0 and 0 EO E, then just apply Case 2 to g. This
exhausts all possibilities by assumptions (i) and (ii) in Theorem I, which
guarantee that 0 and I cannot both be in C.

Remarks. ( I) It is easily seen from the proof of Theorem 1 that
assumptions (i) and (ii) can be replaced by the weaker assumption that 0
and 1 are not both in the set C. We preferred, however, to state Theorem I
without any reference to the Alternation Theorem.

(2) For II:S; 3 Theorem I holds without assumptions (i) and (ii).
For 11= I this is trivial. Now suppose 11=2 and p*(O)=f(O)=O,
p*( I) = f( I) = I, so that 0 and I are both in C. Then p* is increasing on
[0, I], and the two points in An (0, I) must be in E (in fact, in E + u E ).
This implies that p* itself interpolates f at three points in [0, I], and
Theorem I is proved. If 11=3 and if p*(O)=p*(I)=f(O)=f(l)=O (so
again 0 and I are both in C), then it is easy to show that there cannot be
an alternation point in C between two points in E. But then p* interpolates
f at at least two points in (0, I). and Theorem 1 follows. This line of
reasoning breaks down for II? 4.

2. TAYLOR SERIES

In this section we discuss restricted range interpolation when the n + I
interpolation nodes coalesce into one point c, and we then have the Taylor
polynomial s,,(x; c) of order 11 at c. In [BRJ it is noted that if/E C'[O, 1J
is non-negative on [0, I], and if 11 is even, then it is possible to choose
CEO [0, 1J such that .I" (x; c) is also non-negative on [0, I]. We now show
that this fails in the restricted range case for any n ? 2. In fact we construct
one f that works for all 11 ? 3. So suppose f satisfies, for each II? 3.

fill t 11<0

O:S;f:S;1

on [0, I J

on [0, IJ

(2.1 )

(2.2 )

/(0)=0, 1(1)= 1, and for some X o in (0, 1). (2.3,
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It is not hard to construct such an f For example, one can choose
fIx) = pIx) - ke" where p is a cubic polynomial and k and r arc positive
constants. Then f will automatically satisfy (2.1 ). We must choose p, k, and
I' to force f to satisfy (2.2) and (2.3). First let g(x)=q(x)-e', q a cubic,
so that g has two local maximums and a local minimum in between. This
can be done so that f(x) = g( L(x)) + c satisfies (2.2) and (2.3), for some
linear function L and some constant c.

Now let p(x) = SI/(x; c) for fixed Il;;d and c in [0. I], and let £(.'1) =

f(x)-p(x)=[f(I/III(()/(Il+I)!](x--C)IIII, (between x and c. Since

£( I ) < 0 unless c = I, we must choose c = I-for otherwise p(l ) > I. But if
11 is even, then £(0»0, which implies p(O)<O. If n is odd, then £(.'10 )<0,
which implies that p(xo)> I. Thus 0 ~ f ~ I on [0, I], but no Taylor poly­
nomial to f of degree at least three, expanded about c in [0, 1], has the
same property. For 11 = 2 we can choose f to satisfy (2. [)-(2.3), except we
do not assume f(x o) = I for some '\0 in (0, I), which is really only used
when 11 is odd.

It is natural to ask what happens when n = I. i.e., must some tangent line
to f be bounded between 0 and I on [0, I], where we assume f is differen­
tiable on [0, I] with 0 ~ f ~ I 'J We can prove the following partial result.

THEOREM 2. Suppose °~ f( x) ~ I. f( 0) = 0. f( I ) = I, and f'" (\) '" D/i)r
all x in [0, I]. Thenj(Jr SOnIC c in [0, I], the tangent /inc at (c. fl c)), T, (x).
satisfies °~ T,(x) ~ I fin' a/l x in [0, 1].

Proof: We can assume f' is never 0, for otherwise there is a horizontal
tangent line which does the job. Since f(O) < f( I ). we then have I' > 0 on
[0. I]. Now if f" is never 0 in (0, I ). then we can choose the tangent line
at (0,0) if f is convex, and the tangent line at (I, I) if f is concave. So
suppose (.\(),f(x o )) is an inflection point, where O<x()< I (Since f" is
monotone there is precisely one inflection point if f" vanishes somewhere
in (0, I)).

Case I: f"(x)<O for .'1<.'10 ,

Then we can choose c = x () for the following reason. Let E( x) =

FIx) - T",(x) = (f"(()/2)(x - X O)2, ( between x and .'10 , Then it follows
immediately that E(O) ~ 0 and E( 1) ;?; O. and since T,,, is increasing,
Theorem 2 is proven in this case.

Case 2: j"'(x) > 0 for .'1<.'10 ,

Note that we cannot have both ('(0) > I and/'( I) > I, since then
f'(x) > 1 for all x in [0, I], which contradicts, by the Mean Value
Theorem, the fact that (f(I)-f(O))/(I-O)~1. Now To(x)==f'(O)\,
which implies that To(I)=f'(O), and T,(x)=l+f'(l)(x-Ij, which
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implies that TdO) = I -j'( I ). Thus To and/or T] must satisfy the conclu­
sion of Theorem 2.

3. OPEN QUESTIO:"S

It is natural to ask how many of the interpolation points in Theorem I
can be specified in advance. For non-negative interpolation this question
was discussed in [H], where it was shown that roughly half the points can
be fixed in advance if f is positive at those points. If f( c) = 0, c E [0, 1].
then it is possible that there is no non-negative Lagrange interpolant to f
when one of the interpolating points includes c. A similar negative result
follows immediately for restricted range interpolation. For example, there
is no non-negative quadratic (and hence no quadratic bounded between °
and I) that interpolates x' at three distinct points in [0, I]. °included.

QUESTION I. HOlt' many interpolation points, (e, ftc)), in Thcorcm I Ciln
hc spccificd in adrancc it°< f( c) < 1')

QUESTION" Can assumptions (i) and (ii) hc rcmovcd in Thcorcm I')

QUESTIO"i 3. Docs Theorem I hold )t'hen the upper and !ower jimctions
arc not necessarilr constan!') f;J;'hat ahout ji)r Chehvsher Sl'stems other than
the polynomials? (The techniqucs in this paper do not sccm to )t'ork in thosc
cases. )
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